• Python Basics & Libraries Overview (NumPy, Pandas, Matplotlib)
• Working with DataFrames
• Data Cleaning and Manipulation
• Visualizing Data with Seaborn and Matplotlib
• Handling Missing Values
• Encoding Categorical Data
• Feature Scaling
• Train/Test Splitting
• Data Pipeline Creation
• Linear Regression
• Logistic Regression
• Decision Trees and Random Forests
• Support Vector Machines (SVM)
• K-Nearest Neighbors (KNN)